Copied to
clipboard

G = C12.3C42order 192 = 26·3

3rd non-split extension by C12 of C42 acting via C42/C22=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C12.3C42, C23.38D12, M4(2)⋊3Dic3, C6.12C4≀C2, C4⋊Dic311C4, (C4×Dic3)⋊6C4, C12.10(C4⋊C4), (C2×C12).10Q8, C4.3(C4×Dic3), C33(C426C4), (C2×C12).492D4, (C3×M4(2))⋊6C4, (C2×C4).25Dic6, (C22×C6).46D4, (C22×C4).341D6, (C2×M4(2)).6S3, C2.3(D12⋊C4), C12.94(C22⋊C4), C4.10(Dic3⋊C4), C22.42(D6⋊C4), (C6×M4(2)).10C2, C22.3(C4⋊Dic3), C4.27(C6.D4), C23.26D6.8C2, C2.14(C6.C42), C6.14(C2.C42), (C22×C12).124C22, (C2×C6).7(C4⋊C4), (C2×C4).69(C4×S3), (C2×C4×Dic3).2C2, (C2×C12).62(C2×C4), (C2×C4).39(C2×Dic3), (C2×C4).179(C3⋊D4), (C2×C6).54(C22⋊C4), SmallGroup(192,114)

Series: Derived Chief Lower central Upper central

C1C12 — C12.3C42
C1C3C6C2×C6C2×C12C22×C12C23.26D6 — C12.3C42
C3C6C12 — C12.3C42
C1C2×C4C22×C4C2×M4(2)

Generators and relations for C12.3C42
 G = < a,b,c | a12=b4=1, c4=a6, bab-1=a-1, cac-1=a7, cbc-1=a9b >

Subgroups: 264 in 110 conjugacy classes, 51 normal (39 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, C6, C6, C6, C8, C2×C4, C2×C4, C23, Dic3, C12, C2×C6, C2×C6, C42, C22⋊C4, C4⋊C4, C2×C8, M4(2), M4(2), C22×C4, C22×C4, C24, C2×Dic3, C2×C12, C22×C6, C2×C42, C42⋊C2, C2×M4(2), C4×Dic3, C4×Dic3, C4⋊Dic3, C6.D4, C2×C24, C3×M4(2), C3×M4(2), C22×Dic3, C22×C12, C426C4, C2×C4×Dic3, C23.26D6, C6×M4(2), C12.3C42
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, Q8, Dic3, D6, C42, C22⋊C4, C4⋊C4, Dic6, C4×S3, D12, C2×Dic3, C3⋊D4, C2.C42, C4≀C2, C4×Dic3, Dic3⋊C4, C4⋊Dic3, D6⋊C4, C6.D4, C426C4, D12⋊C4, C6.C42, C12.3C42

Smallest permutation representation of C12.3C42
On 48 points
Generators in S48
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 43 18 33)(2 42 19 32)(3 41 20 31)(4 40 21 30)(5 39 22 29)(6 38 23 28)(7 37 24 27)(8 48 13 26)(9 47 14 25)(10 46 15 36)(11 45 16 35)(12 44 17 34)
(1 37 21 36 7 43 15 30)(2 44 22 31 8 38 16 25)(3 39 23 26 9 45 17 32)(4 46 24 33 10 40 18 27)(5 41 13 28 11 47 19 34)(6 48 14 35 12 42 20 29)

G:=sub<Sym(48)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,43,18,33)(2,42,19,32)(3,41,20,31)(4,40,21,30)(5,39,22,29)(6,38,23,28)(7,37,24,27)(8,48,13,26)(9,47,14,25)(10,46,15,36)(11,45,16,35)(12,44,17,34), (1,37,21,36,7,43,15,30)(2,44,22,31,8,38,16,25)(3,39,23,26,9,45,17,32)(4,46,24,33,10,40,18,27)(5,41,13,28,11,47,19,34)(6,48,14,35,12,42,20,29)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,43,18,33)(2,42,19,32)(3,41,20,31)(4,40,21,30)(5,39,22,29)(6,38,23,28)(7,37,24,27)(8,48,13,26)(9,47,14,25)(10,46,15,36)(11,45,16,35)(12,44,17,34), (1,37,21,36,7,43,15,30)(2,44,22,31,8,38,16,25)(3,39,23,26,9,45,17,32)(4,46,24,33,10,40,18,27)(5,41,13,28,11,47,19,34)(6,48,14,35,12,42,20,29) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,43,18,33),(2,42,19,32),(3,41,20,31),(4,40,21,30),(5,39,22,29),(6,38,23,28),(7,37,24,27),(8,48,13,26),(9,47,14,25),(10,46,15,36),(11,45,16,35),(12,44,17,34)], [(1,37,21,36,7,43,15,30),(2,44,22,31,8,38,16,25),(3,39,23,26,9,45,17,32),(4,46,24,33,10,40,18,27),(5,41,13,28,11,47,19,34),(6,48,14,35,12,42,20,29)]])

48 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C4D4E4F4G···4N4O4P4Q4R6A6B6C6D6E8A8B8C8D12A12B12C12D12E12F24A···24H
order12222234444444···4444466666888812121212121224···24
size11112221111226···6121212122224444442222444···4

48 irreducible representations

dim1111111222222222224
type++++++-+-+-+
imageC1C2C2C2C4C4C4S3D4Q8D4Dic3D6Dic6C4×S3C3⋊D4D12C4≀C2D12⋊C4
kernelC12.3C42C2×C4×Dic3C23.26D6C6×M4(2)C4×Dic3C4⋊Dic3C3×M4(2)C2×M4(2)C2×C12C2×C12C22×C6M4(2)C22×C4C2×C4C2×C4C2×C4C23C6C2
# reps1111444121121244284

Matrix representation of C12.3C42 in GL4(𝔽73) generated by

07200
1100
00460
00127
,
306000
304300
007219
00461
,
665900
14700
002771
001346
G:=sub<GL(4,GF(73))| [0,1,0,0,72,1,0,0,0,0,46,1,0,0,0,27],[30,30,0,0,60,43,0,0,0,0,72,46,0,0,19,1],[66,14,0,0,59,7,0,0,0,0,27,13,0,0,71,46] >;

C12.3C42 in GAP, Magma, Sage, TeX

C_{12}._3C_4^2
% in TeX

G:=Group("C12.3C4^2");
// GroupNames label

G:=SmallGroup(192,114);
// by ID

G=gap.SmallGroup(192,114);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,28,253,64,136,1684,851,102,6278]);
// Polycyclic

G:=Group<a,b,c|a^12=b^4=1,c^4=a^6,b*a*b^-1=a^-1,c*a*c^-1=a^7,c*b*c^-1=a^9*b>;
// generators/relations

׿
×
𝔽